— 2 — 2
Q,(a,) =gz Co 0, (0) — oy 0— ) + 2, vy = u 4 e

Equation (5) for the second mode yields a satisfactory quantitative approximation. The constants in Eq. (4)
for Re =3000 have the values

a; =~ 0486; a,x 0.243; &=~ 4.5; &~ —0.515; u~ 1.02.
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CALCULATION OF THE INTERACTION OF A TURBULENT
BOUNDARY LAYER WITH AN EXTERNAL SUPERSONIC
FLOW ON THE CONCAVE CORNER AND ON THE
SPHERICAL INTAKE PART OF A BODY

A. N. Antonov » UDC 532.526.4 : 533.6.011.5

INTRODUCTION

An integrated method of calculating turbulent flow on two-dimensional and axisymmetrical bodies in
separation and attached boundary layer zones arising in the neighborhood of a concave corner and on a spher-
ical intake part of a body is proposed. The method allows us to calculate pressure distribution, displacement
thickness, and momentum thickness within the region in which the boundary layer interacts with an external
ideal flow. The phenomenon of the interaction between a viscous and nearly inviscous flow is widespread. It
is observed when a concave corner is streamlined, as a pressure shock impinges on a boundary layer, in the
case of flow in the neighborhood of the spherical intake part of an axisymmetrical body, and in many other
cases. The distinctive features of this phenomenon when two-dimensional and axisymmetrical bodies are
streamlined has been theoretically investigated in [1-4]. Separated flows due to a pressure shock or an ob-
stacle have been studied in [1-3], while [4] determined the base pressure behind the spherical intake part of a
body. Theoretical investigations for the case of "free" separated flows in which the separation point and the
attached boundary layer were not fixed, for example, on a plate with long wedge attached to it, have been car-
ried out within the context of boundary-layer theory using integrated methods. In the current article, an in-
tegrated method of calculating flows in a base region [5] is used to calculate "free" separated flows in the
neighborhood of a concave corner and on a spherical intake part of a body with a base support. The results of
the calculations are compared to experimental data.

§1. Let us consider the following approximate flow scheme in the separation zones of a boundary layer
in front of a wedge (flap) in the form of a scheme for the ordinary interaction of a turbulent boundary layer
with an external ideal flow (Fig. 1). The inferaction region is within the separation zone 1-4 and the attached
zone 5-8.

In the separation zone, we distinguish gradient flow 1-3 and constant-pressure flow 3-4; $;S; is the con-
stant flow rate line, where S; and S, are critical points. The calculation of the interaction of viscous layers
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with an external ideal supersonic flow will be carried out within the framework of boundary-layer equa-
fiong. According to [5], the following system of equations may be written for the interaction region:

do* (dx=F (M, 8%, 8%*); {1.1)
dor* [de=F,(M, &%, g**);
dM/dz=FsM, &%, 6*%),

where
e** 6** d
Fo=tgf+D, Fy =T — Fy5m (H+2) — =3, (1.2)
AMA . op dy g dF
Fy=—gogeee Fs =M -2 Fs = 5
§* [ 1 e AF 11 8.5¢ _
A
0.5 \
s ()7 B 7, = 051,015, + 0.22P5 4 (0.5 — 0.22P5") L1,
P HI /T, 172 ot — 1) M2

THH* 12 m—DMEH 1)

We note that Eqs. (1.1) were obtained usingthe Coles —Krokko transformation, by means of which a
compressible turbulent layer is transformed into an incompressible boundary layer. We obtain a relation
between the parameters A% and h of a compressible boundary layer and the parameters A% and H of an in-~
compressible layer using previous [5] equations,

I I .
h:H%—{-(—f;‘——i), {1.3)
Az A% kI
FETHL a4

Equations between the parameters of an incompressible turbulent layer H, H*, I' and A occurring in
the system of equations (1.1} for the zone of an attached boundary layer 1-2 (cf. Fig. 1) are assumed to be
known and are selected in the form of dependences H=H(A), T’ =T'(H), and H* =H*(H), as presented in [5].
The equations between these parameters will be defined in the zone of circulatory flow 2-3. For this pur-
pose we will jointly solve the first two equations of the system (1.1) and calculatethe parametersd* and 4% *
in the separation zone of a two-dimensional boundary layer (the pressure distribution in the interaction
region and the variables 87, 67 *, (d6*/dx); =tan B, and M in the initial section 1 are taken from experi-
mental studies {6, 7]). The parameter I vanishes in the zone of circulatory flow [5]. In order to take into
account undermixing (D # 0) we will use the method of successive approximations, which consists in first
setting D=0 and calculating from the first equation of Egs. (1.1) the distribution of the parameter §*(x)
and from the second equation, that of § * *(x), the parameter S being found from the Prandtl—Meyer equa-
tion. Equations befween the parameters H, h, 6* *=8%/h, and 6* * are used in the course of the calculations.

We find the distribution of H(x) and A(x) as we carry out calculations, taking into account Egs. (1.3)
and (1.4). We further compute the distribution of the parameter characterizing undermixing D(x). For
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this purpose, we use the parameters F3, F's, and h*, applying Eq. (1.2) and the dependence H*=H* (H) used
in [5] in order to calculate h*. Once we obtain D(x), we repeat the integration of the first two equations of

Eq. (1.1) until the values 8*/8F and 6 **/5;* * of the last approximation no longer differ from the preceding
values by 107°.

The dependences H=H(A) thus calculated in the separation zone of a boundary layer when My is be-
tween 1.56 and 3.0 and Reg, is between 3 - 10* and 11-10* are depicted in Fig. 2. Here 1 represents M=
2.92; 2, My=3.00; 3, My =2.49; 4, M;=1.56; 5, M;=2.32; 6, M;=1.79; and 7, M;=2.4. The resulting data
are approximated by a theoretical dependence H=H(A) calculated for an equilibrium incompressible tur-
bulent boundary layer [5, 8] in the region of the attached boundary layer. The results can be approximated
by a linear function having the value H=H; =10 when A =0 in the zone of circulatory flow.

§2. We may calculate the pressure distribution in the separation region by integrating the system of
equations (1.1) after we obtainthe dependence H=H(A) throughout the entire interaction region. The equa-
tions T’ =T'(H), A* =A¥(M*), H* = H¥*(H), and M*=0.5(M;+M,) given in [5], as well as the dependence H=
H(A) we have found (cf. Fig. 2), are used in the calculations. The parameter B is calculated for two-di-
mensional flow from the Prandtl—Meyer equation and by the method of characteristics for axisymmetrical
flow. Since the system of equations (1.1) is a system of ordinary differential equations, it is sufficient to
indicate the set of parameters M;, 67, 67 *, and B8, in the initial interaction section 1. If the position of
section 1 is known (for example, from experiment), we may calculate the critical pressure ratio p}=ps/p;
at which the turbulent boundary layer separates. For this purpose, we will carry out the calculation from
section 1 (the parameter H~ 1.3) to section 3. The calculation is assumed valid when H reaches the value
H=H;=10.0, which is the finite boundary condition in section 3.

On the other hand, whenever the position of the interaction starting section is unknown, it is neces-
sary to impose additional conditions on the system of equations (1.1), i.e., to specify terminal boundary
conditions. It is convenient to select full conditions on a two-dimensional plate (specifying Ag=0 and 83=0)
as the additional conditions in the attached region, when calculating flow in the neighborhood of a flap in-
ducing separation of the boundary layer (cf. Fig. 1). Calculations of two-dimensional flow in the neighbor-
hood of a concave corner (flap) will first be carried out in the separation zone and then in the attached
zone. The values of the boundary-layer parameters in section 1 will be calculated in accordance with the
position we have supposed. The position of the interaction starting section is refined in the course of the
solution. The calculation is carried out from section 1 to section 3, resulting in 83, 63 *, M3 and B; in the
separation zone. We calculate the length of the constant-pressure flow zone 3-6. The calculation is car-
ried out using a previous [9] method under the assumption that flow into the attached zone is equivalent to
flow in the base region behind a step of depth b=(x;—x3) sin a* (cf. Fig. 1); the constant-pressure flow
parameters of the base region M, 8, and 8* * are as follows, taking into account the wedge angle a*: M=
M, =M;, B=B;=B;—0*, and 6* *=8{ * =67 *. The displacement thickness has the form

8 = (6;4‘ b) + [(zg — z5) + (¥4 — x5) cos o*] tg Be.
We then consider the attached boundary-layer region 6-8, which is calculated using a previous [5]

method. The flow conditions on the wedge surface are selected in the same way as for a two-dimensional
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plate, i.e., B3=0 and Ag=0, at the end of the interaction region. The boundary conditions at the end of the
interaction zone for a given wedge generatrix angle a* are satisfied by selecting the position of the starting
section 1 by the range method. Our calculations demonstrated that the length (xg~xg) of the constant-pres-
sure zone 5-6 cannot be computed, and must be set equal to zero when calculating the attached zone for
small separation regions in which no constant-pressure zone 3-4 occurs (in this case, it has been shown

by Bonderav [3], who processed his experimental data in separation zones in front of a flap, that a*=28,).

Calculated pressure distributions p’=p/p, in the interaction zone for M;=2.0, 2.7, and 3.0 are com-
pared in ¥ig. 3 fo previous [10] experimental data. Curves 1-3 correspond to M;=2.0, o* =20°; M =2.7,
a*=95° and M =3.0, o* =25°; L=140 mm. We should bear in mind that experimental data in the attached
boundary-layer region on the flap are available for the entire interaction zone only for the case M, =2.7.
Therefore , the calculation can be compared to experiment when M; =2.0 and 3.0 only for the separation
zone.

§3. Let us consider flow arising near the surface of a spherical body streamlined by supersonic
flow {Fig. 4). A departed shock wave 1 is observed in front of the body. The parameters of the undisturbed
gas in front of the shock wave are Mo, Do, and peo. Gas velocity is equal to zero at the leading critical
point on the surface of the body while pressure and density p} and pY are, correspondingly, calculated from
the parameters of stagnant flow behind the plane shock wave. The x-coordinate is counted off along the
generatrix of the surface of the body and is determined by the central angle &« =x/R, where R is the radius
of the sphere.

The appearance of a shock wave 2 at the separation point of a boundary layer from the surface of the
body is the distinctive feature in the formation of the boitom wake of a spherical body [4]. The flow as-
sumed the direction of the drag axis passing through the shock wave 3 in the attached boundary-layer re-
gion. The total flow on the body may be divided into three zones. The first zone is from the leading crit-
ical point to section 1, the second is the separation zone 1-4, and the third is the attached boundary-layer
zone 5-8. Well-known experimental and theoretical studies [11] of sphere sfreamline in an attached flow
region (in the first zone) give us grounds for asserting that the dimensicnless pressure p/p' monotonically
decreases as « increases in the range of angles from 0 to &y. Experiments carried out in a separation
zone on a spherical intake part of a body demonstrate that pressure increases with increasing & in the
separation zone 1-3, reaching some constant value in the zone 3-4 {base pressure value).

We will use the system of equations {1.1) to calculate flow in a separation zone. The calculation will
be carried out from section 1 (cf. Fig. 4) downstream the main flow, to section 3. Here we will use the
equations given in Sec. 1 between the parameters H, H¥, A, T') A* and M*. Results of a numerical solu-
tion obtained [11] for ideal gas flows were used to calculate the flow parameters in section 1. It should be
noted that the boundary-layer equations (1.1) were written in an orthogonal %, y-coordinate system, the x~
coordinate being counted off along the body generatrix. Equations for an external ideal supersonic flow
derived by the method of characteristics can be conveniently written in an orthogonal XY-coordinate sys-
tem, where the X axis is directed along the axis of symmetry of axisymmetrical flow. It is therefore also
necessary to take into account in the calculation equations relating both coordinate planes. Here

ﬁ:ﬁ'* - ﬁ*v

where $* is the aungle between the direction of the velocity vector on the boundary of the boundary layer
and the X axis and Bx is the angle between the x and X axes.
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Flow on the intake part of a sphere with a cylindrical base support resembles flow in the neighbor-
hood of an "axisymmetrical flap.® The calculation of the interaction of a turbulent boundary layer with an
external ideal supersonic flow is analogous in this case to the calculation suggested in Sec. 2.

Let us calculate flow in the neighborhood of a spherical intake part of a body with base bracket. We
first calculate the flow in the separation zone 1-3. After the parameters in section 3 have been determined,
we then calculate the length of the constant-pressure flow zone 3-6. It is calculated using a previous [9]
method under the assumption that flow in the base region with step of depth b=R cos a3—r, occurs in this
zone {cf. Fig. 4), the constant-pressure flow parameters in the base region (M and 6**) having the form

M=M; =M, &* =58 = (8 Rcosay)/r,
and the displacement thickness given by

X¢
8e =~ (05 —l—b)—{-jtgﬁdz.
X3

The attached boundary-layer region 6-8 is calculated using a previous {5] method. Calculation of
the external ideal flow (to obtain the parameter 8*) is carried out by the method of characteristics.

Let us write equations for the characteristics of the first and second families in a physical XY plane
and in the motion hodograph plane [13],

== *L%%; Edl = Ddz + LdX =0. (3.1)
We will have on the streamlines,
ay 4 du? ] dz
EX‘:F’ 3 +FdZ=O, dt:T’ (3'2)
where
_ . _ 1 2 g _4 . _ u .
A=1(1—0); B=—(—P—8 E=173 D=y
L A

“wBTAY"

The F. fi. Elers variables p=V M1, I=tg(p*/4), z= In(p/ps), t=1n(p/p,), and wy =wVpy/p were taken
as the unknown functions. ’ '

We calculate the flow on an internal streamline gmm! {(cf. Fig. 4) using the characteristics of the
second family (3.1) and the streamline equation (3.2). We obtain as the final differences

Y— Yo=(Xpn —XNA/B)a, (Y —Y o) =(Xm —X ) (nAd —B) /(1B +A)le.

In the motion hodograph plane we have for the characteristics of the second family

D L,
ln=1, + E—:—(zm—zc) T-ET (X — Xo).

Equations (1.1) were used to calculate the zy, values. We compute the characteristic ¢'d m’, the
streamline element mm', and so on after we have obtained the characteristic cm. Thus, we find the so-
lution for external ideal supersonic flow.

A calculation using the F. . flers variables significantly shortens computation time in comparison
with the ordinary calculationusing the variablesp = arctanVM*=1 and 8*. The conditions B3=0 and Ag=0in
section 8 are used for the system of equations (1.1) as the terminal boundary conditions. Our method was
used for a base support of radius r,> 8;. Figure 5 depicts the dependence of base pressure p; =P/ Po be-
hind spherical bodies on the number M, calculated as Mo, varied from 1.7 to 5.0 and when r,/R =0.25.
The function p]=f(Me) has a minimum at Me~ 2.5. Curve 1 corresponds to 6% */R=0.005, while curve 2,
to 6’1* */R=0.003, and curve 3, to results of a calculation (6T */R=0) carried out using a previous [4]
method.

§4. An experimental study of the interaction of a turbulent boundary layer with an external super-
sonic flow was carried out for the spherical intake part of a cylindrical body. We used an annular con-
toured nozzle with center body (the model itself was used as the center body) designed for Mo, =1.9. The
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model diameter d=2R =20 mm; static pressure was selected by means of tubes with internal diameter
d;=0.5 mm.

Figure 6 depicts the flow scheme in the base region of a cylindrical body with spherical intake part.
A pressure shock I appears in the region of separation of the boundary layer, and flow assumed the direc-
tion of the drag axis passing through the pressure shock I in the attached flow region. Sections denoted
by the digits 0-3 correspond to flow spreading onto the spherical intake part of the body (0), start of inter-
action in the separation zone (1), separation of boundary layer (2), and pressure leveling (3). Both a gra-
dient (1-3) and a gradientless flow zone (3-4) can be distinguished in the separation zone 1-4.

The Reynolds number, calculated using the parameters of the incoming flow to the edge of the bound-
ary layer and the length of the center body from the nozzle "jet,” varied in the range from 4.1« 108 t0 9.6 -
10%. In Fig. 6, 1 corresponds to Re=4.1-10%, 2, to Re 6.8-10%, and 3, to Re=9.6 - 10°. Measurements of
the total pressure profiles carried out using a total pressure pipe (micro-Pitot) in the section directly in
front of the spherical part of the body when Re=6.4 - 10° demonstrated that n was approximately between
1/7 and 1/8 and that the momentum thickness 63‘ */d=0.0035 after scaling to the velocity profile u/u;=
(y/o)m,

Results of measurements of the pressure distribution p'=p/ pe Obtained on the spherical intake part
of a body are presented in Fig. 6.

A calculation was carried out using the theory developed above by assuming that the base pressure
behind the spherical intake part with base support r,/R =0.25 was practically equal to the base pressure
without the support (which was experimentally proved to within 3-10% for cylindrical bodies and cones
with a two-~dimensional end intake part). Results of the calculation are depicted in Fig. 6 (curve 4).

In conclusion, the author wishes to express his appreciation fo M. Ya. Yudelovich and E. N. Bondarev
for useful remarks and discussion of the study.

NOTATION

X, ¥, longitudinal and transverse coordinates; 8, 6%, 6% *, houndary-layer thickness, displacement
thickness, and momentum thickness; 8, 8%, ¢* *, layer thickness, displacement thickness, and momentum
thickness of an incompressible boundary layer; u, p, longitudinal velocity and density of a compressible
boundary layer; U, p!, longitudinal velocity and density of an incompressible boundary layer; A, pressure
gradient parameter of an incompressible boundary layer; w, velocity; M, p, Mach number and pressure;
a, speed of sound; r, radius; I, enthalpy; @*, angle of inclination of the flap; 7, frictional stress; v, Prandtl—
Meyer angle; Pr, Prandtl number; r,, radius of the base part of the axisymmetrical part of the body; r,,
radius of the base support; b, depth of step; £=0 for two-dimensional flow; 8, angle between the direction
of velocity of the external edge of the boundary layer and the surface of the body; € =1 for axisymmetrical
flow. Indices: 0, stagnant flow; 1, on the external edge of the boundary layer or at the start of the zone
within which the boundary layer interacts with an external ideal flow; w, parameters on the wall; !, for
incompressible flow.

— ﬁ . B &% . &k % g ”
A 7 H = g HY = GT; H**:ei(:;
Tw = V2paut; o = DU, 2 = cpfens 0 (x4 1)/ — 1)

v = 0% artg (M2 — 1)/8]"° — arotg (M2 — 1)°;

2| dy
uy dr i’

H]
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INTERACTION OF AN EXTERNAL DISTURBANCE
WITH TURBULENT FLOW

M. A. Goltdshtik and M. Kh. Pravdina UDC 532.517.4

Previous calculations [1] and a critical analysis of the interpretation of some experimental
data [2, 3] are verified and refined. A model is proposed that directly takes into account in the
motion equations terms describing the interaction of the disturbance with turbulent oscillations.
The advantages of such an approach in comparison with the use of turbulent viscosity models
are demonstrated.

Interest in the stability of turbulent flows has recently grown in connection with attempts to predict the
averaged characteristics of turbulent flow based on stability properties [4-7]. The stability problem as of
now has been solved only in a quasilaminar approximation, in which the interaction of the disturbance with
fluctuations is not taken into account [5]. This is due to the absence of experimental data that would permit
any given model describing such interaction to be accepted. A series of works by Reynolds and Hussain [1-3],
in which original experiments and the first calculations using models taking into account the interaction of a
weak nonrandom signal from the turbulence for channel flow were performed, appeared in 1970-1972.

A periodic perturbation (vibrating streaks near walls) was introduced in a given section of the channel
and its downstream propagation was studied. A weak, nonrandom signal consisting of about 4% of the turbulent
velocity fluctuations was isolated. Experiments were carried out for four frequencies with a Reynolds num-
ber (Re=13,800) calculated according to the channel half-width and maximal velocity [2].

A spatial stability problem for turbulent flow to a linear approximation arose as a result of this experi-
ment. The exponential nature of signal attenuation was indicated by the validity of the linear approximation
[2-3].

The disturbance equations have the form

a<l’i>_l_ (UKo T U o) apy 1 ECD
iz 6xj oz, T Re azjaxj

a m , om /
5 SOty T uivp; oo =0, &)
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